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Examples of the one-dimensional, steady-state electrodynamic flow of 
liquids characterized by power-type rheo!ogical laws and Shvedov--Bingham 
plastics in channels with dielectric walls in a uniform longitudinal 
electric field are considered. 

The flow of liquids and gases containing three-dimensional distributions of elec- 
tric-charge density, subject to the influence of an external electric field (electro- 
hydrodynamic or EHD flows [1-7]), is now being intensively studied, in the chemical 
and petrochemical industries, in polymer technology, and also in connection with spe- 
cific biomechanical problemS, interest is centered in the EHD flow of media possessing 
mechanical properties more complicated than viscous Newtonian liquids. As the math- 
ematical model of a continuous medium, describing the flows of various emulsions, sus- 
pensions, and similar finely-dispersed media, we may take the well-known three-constant 
rheological model 

= %  dU-I  d U  d U  n-I d U  

d x  T x  @ ~ dx l --dx ; ITI>T~ (1)  

As To + 0 ,  Eq.  (1) d e s c r i b e s  a l i q u i d  w i t h  a p o w e r - t y p e  r h e o l o g i c a l  l a w ,  w h i l e  f o r  n = 1 
i t  d e s c r i b e s  a v i s c o p l a s t i c  medium o r  Shvedov- -Bingham p l a s t i c .  E x a m p l e s  o f  t h e  o n e - d i m e n -  
s i o n a l  s t e a d y - s t a t e  g r a d i e n t  and s h e a r  f l o w  o f  t h i s  k i n d  o f  medium i n  a p l a n e  c h a n n e l ,  a r o u n d  
t u b e ,  and  a c o a x i a l  s y s t e m  may b e  f o u n d  i n  [ 8 - 1 2 ] .  

In individual cases a finely dispersed emulsion or suspension may contain elec- 
trically charged particles. The existence of a three-dimensional electric-charge den- 
sity may be accompaniedby considerable changes in the velocity distribution of the 
medium when a longitudinal external electric field is applied to the latter. An example 
of a medium with properties similar to those of the model under consideration is a sus- 
pension of diatomite in transformer oil [13], comprising 10% diatomite, 89% transformer 
oil, 0.7% activator (water), and 0.3% oleic acid. An experimental investigation based 
on an electroviscometer led to the conclusion [13] that, in the rheological respect, 
dielectric flowing media with finely dispersed structures behaved as typical pseudo- 
plastics in external electric fields. We also note that in a number of investigations 
relating to the mechanical properties of finely dispersed media the existence of a limit- 
ing tangential shear stress in the latter was indicated in [14]. In view of all this 
the applicability of the rheological model in form (i) to the study of EHD flow in fine- 
ly dispersed media may be regarded as reasonably well-based. 

In this paper we shall consider some examples of the EHD flows of liquids with a 
power-type rheological law (To = 0) in a plane channel, and those of a viscoplastic 
medium (n = i) in a round tube with dielectric walls. 
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Fig. i. Velocity distribution of a 
power-law liquid in a plane channel 
for positive and relatively large 
negative values of the parameter He 
(a), and for small negative values 
of the parameter Ne (b) (continuous 
curves n = 0.5; broken curves 1.5; 
dotted and dashed curves 1.0). The 
vertical axis represents x. 

i. Gradient Flow of a Power-Law Liquid 
in a Plane Channel. Let an incompressible 
liquid with a rheological law of form (i), 
having To = 0, flow in a plane channel with 
dielectric walls (-- a < x < a) in the pres- 
ence of a uniform external--electric field 
E z = Eo = const. We shall assume that the 
liquid contains a three-dimensional distribu- 
tion of electric-charge density p = p(x) in 
which the charge per unit length of channel 

a 

q0= f p(x)dx is one of the defining param- 
--a 

eters of the problem. As characteristic 
quantities we take the half-width of the 
channel a, the charge density Po = qo/a, and 
the electric field eo = qo/(sgo). Under 
these conditions (according to [2]) the dis- 
tribution of dimensionless charge density 
and the intensity of the induced electric 
field take the form 

o ( x )  = 

e ( x )  - 

a 1 

2 tg a cos" a x  

I tgax 
2 tg a 

(1.1)  

where the quantity a < ~ / 2  is defined by the 
equation 

a t g ~  -- bq~ 
4Dee ~ ( 1 . 2 )  

Let us consider flow in a channel under 
the action of a pressure gradient P = 
--($p/3z) > 0 constant in time. Taking the 
quantity Uo = (an+IP/q) I/n as the character- 
istic velocity of the problem, we may write 
the dimensionless equation of motion of the 
medium and the boundary conditions of the 
problem for the flow under consideration thus 

i 

QU' W ~U')' --I n , p  (x) = - -  t, 
(1.3) 

u ( = o = o .  

Here and subsequently the prime denotes a derivative with respect to the coordinate x. 
The parameter characterizes the ratio of the electric forces to the pressure forces. 
We note that the sign of ~e depends on the direction of the external electric field 
(Eo ~ 0 for ~e ~ 0). Integrating Eq. (1.3) with due allowance for the flow symmetry 
condition U'(O) = 0 we obtain 

IU'p-~U ' =h(x ) - - - -x  fie tgax (1o4) 
2 tga 

Subsequently we shall confine attention to consideration of the flow region 0 < x < i. 
Allowing for the presence of the modulus of the derivative U'(x) in Eq. (1.4), let us 
study the sign of the latter; for this purpose we must distinguish three modes of flow, 
depending on the size of the parameter E e. 
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Fig. 2. Distribution of tan- 

gential shear stresses in a 

round tube. 

a) If H e > HI = --2, then U'(x) < 0 in the range 

0 < x < 1 and only equals zero in the center of the 

channel~ the rate of liquid flow is positive, and on 

allowing for (1.4) and the condition of adhering to 

the wall of the channel U(1) = 0 it may be written in 

the form of a quadrature 

1 I 1 1 

U(x)= [[/l(X)' T d x =  f (  x + I/7e2 tgaXtga ") -z-dx, (1.5) 
X X 

b) If w e < ~2 = --2 tanu/~, we have U'(x) > 0 

for 0 < x < i, U' being equal to zero in the center 

of the channel; the rate of liquid flow is negative: 

x 1 

U (x) = 1" [fi (x)t~- dx. 
1 

( 1 . 6 )  

c) If H2 < Ee < ~i, there is a point Xo inside 
the channel at which the derivative U'(x) changes 

sign; for Xo < x < 1 we have U'(x) > 0 and for 0 < x 
< xo -- U'(x) < 0; the quantity Xo is determined as 

the nontrivial solution of the equation ~1(x) = 0. 

Clearly xo + 1 as Ee § ~i and Xo § 0 as Ee § H2. The 
velocity distribution of the medium for the case under 

consideration takes the form: 

( x t 

! - j' [[i (x)l n dx, Xo< x < 1, 
I 

V ( x ) =  ] xo 1 xo 1 

11 S tfl (x)] Tdx  + [ [/l(x)] "-h- dx, 0 < x <  x o. 
t x  i' 

(1.7) 

Equations (1.5)-(1.7), governing the velocity distribution of the liquid in the 

channel, enable us to carry out two limiting transitions, n § 1 and E e § 0. The first 
of these corresponds to the transition to a Newtonian liquid [2]. In this case, from 

(1.5)-(1.7) we have 

U (x) 1 -- P ft. cos ~x 
-- - -  + - - l n - - - -  (1.8) 

2 2~ tg ~ cos 

The second limiting transition corresponds to the gradient flow of a non-Newtonian 
liquid with a power-type rheological law in the absence of an external electric field. 
If in Eq. (1.5) Ee tends to zero, we obtain the well-known velocity distribution [i0]: 

n+l 
U(x)-- n ( 1 - - x  n ), O < x < l  ( 1 . 9 )  

n + l  

Figure la,b shows the characteristic velocity distribution of a liquid with vari- 

ous rheological constants in a plane channel for EHD flow; the distribution is calcu- 
lated from Eqs. (1.5)-(1.7) as a function of the parameter Ke for a single value of 

the parameter ~ = ~/4(~i = --2, ~2 = --8/~). 

2. Flow of a Power-Law Liquid in a Plane Channel with No Pressure Head. Let us 

consider the nongradient flow of a liquid with a power-type rheological law between 
plane walls (x = • one of which (let us say x = a) moves under the action of a tan- 
gential shear stress T w constant in time, while the second remains stationary. We take 
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Fig. 3. Velocity distribution of a 
viscoplastic medium in a round tube 
(continuous curves, s = 0.i; broken 
curves, 0.5; dot--dash curves, 0.2). 

the direction of the external field as coin- 
ciding with the positive direction of the 
longitudinal axis of the channel. As char- 

acteristic quantities we choose the half- 
width of the channel a and the velocity Vo = 
(qoEo/n) I/n. In order to make the condi- 
tions specific, let us say that qo, Eo > 0. 
We write down the equation of motion of the 
medium in dimensionless form 

([U'I~-~U')' @ 9(x) = O, (2.1) 

where the function p = p(x) is defined by 
Eq. (i.I). The system of boundary condi- 
tions clearly takes the form 

jU'(t)[~- 1U' (1) =% (2.2) 

U ( - -  1) = O, ( 2 . 3 )  

where T = Tw/(qoEo) is the dimensionless 
tangential shear stress at the upper plate. 
Integrating Eq. (2.1) with respect to the 
transverse coordinate, allowing for the 
boundary condition (2.2), it is easy to de- 
rive 

f u' (x)i ~-~u'(x) = &(x) = - 

! i ! t g  a x  1 . 

2 t g ~  

Analyzing Eq. (2.4), we note that the derivative U1(x) changes sign at the point x = xo, 
where xo is a root of the equation f2(x) = 0. The values Xo = 1 and xo = --i natura!ly 
define the characteristic values of the parameter r, namely TI = 0 and z2 = --i, which 
enable us to distinguish the following flow conditions (modes of flow). 

a) T > TI. In the case under consideration U'(x) > 0 at all internal points of 
the channel; the velocity distribution of the liquid, on allowing for the condition of 
adhering to the lower wall (2.3), takes the form 

b) T < T2. 

C) T 2  < T < T I .  

takes the form 

i I 
u (x) = If2 (x)] T dx. (2.5) 

Here U'(x) < 0 at each internal point of the channel; hence 

x 1 
u ( .0  = - j II~ (x)t  ~ d x .  

- -1  

(2.6) 

For this mode of flow the velocity distribution of the medium 

[ i ~', [& (x)l ~ dx, -- I <X<Xo, 
U 

! 

(x)  = f ~o 1 ~ 1 
I 
[ ( [}, (x)] v dx - -  j" If, (x)l ~- d~, ~o< ~ < 1 
( --i x~ . 

(2.7) 
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3. Gradient Flow of a Shvedov-Bingham Plastic in an Axisymmetrical Channe] with 
a Dielectric Wall. Let us consider the one-dimensional flow of a medium with a rheo- 
logical law in the form (i) (having n = I) passing through a round tube with a dielec- 
tric wall under the influence of a pressure gradient P = --(+p/~z) > 0 (constant in 
time) in the presence of a longitudinal electric field Eo = const. The density of the 

electric-charge distribution qo--2aj, p(x)xdx, we shall regard as known by virtue of the 
0 

solution of the electrodynamic part of the problem [15]. As defining parameters of the 
problem we take the total charge per unit length of tube eo = qo/(2~SSoa), and the radius 
of the tube a. Under these conditions the dimensionless distributions of the three- 
dimensional electric-charge density 0(x) and the value of the induced electric field 
e(x) take the form 

(x)  = 
1 1 - i - ~  

[I + a ( 1 - - x e ) l  2'  

e (x)  = x [ 1 -:-  a (1 - -  x D ] -  ~, 

(3.1) 

where a = qob/(8~soD) is a dimensionless coefficient. 

Passing to the hydrodynamic part of the problem, we write the equation of motion 
of the Shvedov--Bingham plastic in a round tube, allowing for the axial symmetry of the 
flow, thus: 

! d 
(xT) = -- i -- H+p (x). (3.2) 

x dx 

Here T is the tangential shear stress referred to the quantity Pa; H e = qoEo/Pa 2 is the 
electric-interaction parameter (ratio of the electric-to-pressure forces). Integrating 
Eq. (3.2), while allowing for the flow symmetry T(0) = 0, we may write the distribution 
of the tangential shear stresses in the round tube as follows: 

X 
T (x) - H~e (x). (3.3) 

2 
The distribution of the tangential shear stresses for a : 1 is shown in Fig. 2 as a 
function of the electric-interaction parameter, in accordance with Eq. (3.3). 

An analytical study of Eq. (3.3) shows that for H e > Ha =-~a[2(l+2a)] and H e< 
~2 = --(i + ~)/2 the distribution of the tangential shear stresses has no extremum in 
the range 0 < x < i. On satisfying the system of inequalities ~2 < Ke < KI, Eq. (3.3) 
reaches an extremal value T, = T(x,), where x, is given by the equation 

I 

X , = ~  211 +a--H~--v~He(H~--4(1 -l-a))] w2. 

For H e = Ho = --~/a the tangential shear stress vanishes on the tube wall, while for 
He = H w where ~w is defined as the root of the algebraical equation IT(x,) I = T(1) 
the modulus of the extreme stress equals the stress at the wall of the tube. 

In order to construct the velocity profile of the medium in the tube we have to 
find a solution to the equation defining the position of the interface between the 
zones of viscous flow and quasisolid motion ]T(x) I = s, where s = To/Pa is a dimension- 
less plasticity parameter; in the zones of viscous flow we use the rheological law (i) 
wi~h n = I, written in dimensionless form: 

s dU-ldx _____..dU dU, T= ~-x +~- x ]TI>s. (3.4) 

In Eq. (3.4) we take Pae/n as characteristic velocity. In integrating Eq. (3.4) we 
must allow for the condition that the medium should adhere to the tube wall, viz., 
U(1) = 0, and also the continuity condition for the velocity of the medium on passing 
through the interzone boundary. 
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It is convenient to analyze the possible modes of flow as functions of the elec- 

trical-interaction parameter. 

a) H e > ~i. If s < i/2 + Re, there is a unique solution to the equation IT(x)! = 

s which we denote by xo. In the mode under consideration viscous flow occurs in the 

boundary region Xo < x < i, the velocity being 

U (x) 1 - -  x ~ H~ -- -}- - - I n [ l  @ ~(1 - - x ~ ) ] - - s ( 1  - -x ) .  ( 3 . 5 )  
4 2~ 

In the central flow zone 0 < x < Xo the medium moves as a single whole at a velocity 
Uo = U(xo). If s > I/2 + He, no flow of the medium takes place in the tube at all (the 

channel is blocked). 

b) Ho < Ee < ~i. If s < IT, I, the interzone boundaries of the flow are x = xo~ 
and x = Xo2; the central zone 0 < x < Xo~ moves as a single whole, in the zone xol < x < 

Xo2 viscous flow takes place, while in the boundary zone Xo2 < x < 1 the system is at 

rest. The velocity distribution of the medium here takes the form (IT(1)[ < S < IT, I) 

l 

L r  In l-q-co(1 ~Xo21) 
2o; 1 -+- c~ (1 - -  x~2) 

1 + c ~ ( 1 - - x  z) 

2~ 

+ s (xo~ - -  xo~), 0 < x < xol, 

1 - i - c ~ ( l ~ x ~ )  + s ( x - - x ~  x ~  < x~ 

0 Xo2 < x < 1. 

If s > I T ,  I,, the viscoplastic medium does not flow in the tube at all. 

( 3 . 6 )  

c) H w < He < Ho.  In this range of H e the modulus of the extremal value of the 
tangential shear stress is no greater than the tangential shear stress at the tube wall. 
In this case for s > IT, I the viscoplastic medium is quiescent; for --i/2 -- H e < s < 

IT,! the flow pattern is entirely analogous to the previous case (3.6), while for 0 < 

s < --i/2 -- H e we have three interfaces xol, xo2, Xos. There are two zones of quasi- 
solid motion in the tube, together with two zones of viscous flow; in the zone of vis- 
cous flow close to the wall dU/dx > 0 and in the central zone dU/dx < 0: 

U (x) = 

Xo22---Vo2~ } /7~ In 1 ' ,  cz(1 - - x ~ )  1 --X02 3 
4 2cz 1 4 a ( 1 - - x ~ 2  ) -} s (x  a - x o 2  ) } 4 

H 
- '~- In  [1 -"  ~ (1 - -  Xo2a)] - -  s (Xoa - -  i), 0 < x < Xoi, 
2c, 

,2 __x2  /7~ 1 -i- ~ ( 1  - - x  ~-) x~ In ' ( x - - x o . ) - @  1- -x~3  
4 ~ 2 ~  1 - : - ~ ( 1 - - x ~ 2  ) - : - s  . 4 ~-  

//e In [ 1 -'- cz ( 1 - -  xo23 )1 - -  s (Xo~ - -  1 ), Xox < x < xoz, 
2o: 

1 
H---~-~ ln [ l  @ o~(I --xo23) ] - s ( x o a  ~ 1), x o 2 < X < X o 3  , 

4 ~ 2a 

1 - -  X 2 

4 
/ 7 ~ l n [ l .  c ~ ( 1 - - x 2 ) ] - - s ( x - - 1 ) ,  x o 3 < x  < l. 
2cz 

(3.7) 

d) H2 < H e < H w. In this mode of flow the tangential shear stress at the tube 
wall is greater than the absolute value of the extremal tangential shear stress. If 
0 < s < [T,I , wehave the flowdescribedbytheequations (3.7). If IT,[ < s < - i/2 - He, 

the equation IT(x) l = s has a unique root x = xo, but in contrast to case a) the rate 
of flow of the medium is negativet 
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~ 1 - - x ~  ~ Heln[IT~(l__x~)]__S(Xo__1) O ~ x  ~ x o, ,I 4 ~ 2~ 
V (x) = 

! 
l - - x 2  He ln [1-b  ~ ( 1 - -  x2)] - -  s (x - - 1 ) ,  X o ~ X ~ l .  ( 3 . 8 )  
4 ' 2~ 

For s > --I/a -- H e the viscoplastic medium is quiescent. 

e) H e < Ha. In this case the velocity distribution of the flow obeys Eq. (3.8) 
for all s < -- I/a -- H e. 

Figure 3 shows the results of some calculations of the velocity profiles of a 
viscoplastic medium in a round tube for a = 9 in relation to the electrical-interaction 
parameter H e for several values of the plasticity parameter s. For the sake of clarity 
the quasisolid zones are shown shaded in Fig. 3. 

In conclusion, let us consider the physical interpretation of the foregoing solu- 
tions. First of all it should be noted that the three-dimensional electric-charge 
density in the plane and axisymmetrical channels (I.i) and (3.1) is not constant. The 
greatest electrical-charge density corresponds to the boundary region (next to the wall). 
Hence the ponderomotive forces arising in the liquid in the presence of an external 
electric field are greatest close to the walls of the channel. 

For positive values of the parameter He, when the ponderomotive forces coincide 
in direction with the pressure forces, the nonuniformity of the electric-charge dis- 
tribution in the channel leads to a relative increase in the velocity of the liquid in 
the boundary regions for the case of EHD flow (by comparison with ordinary hydrodynamic 
flow). In other words, for H e > 0 an increase in the external electric field leads not 
only to an increase in the rate of liquid flow but also to the compression of the veloc- 
ity profile. 

For negative values of the electrohydrodynamic-interaction parameter H e < 0, when 
the ponderomotive forces are in the opposite direction to-the pressure forces, an in- 
crease in the external electric field retards the liquid, this effect being greatest 
close to the walls of the channel. For a certain value of the parameter H e < 0 the 
ponderomotive forces exceed the pressure forces in magnitude in the region next to the 
wall. This leads to the appearance of a reverse flow of the medium in the boundary re- 
gions. On further increasing the external electric field with H e < O, the velocity of 
the liquid becomes negative over the whole flow region. 

NOTATION 

T is the tangential shear stress; To is the limiting tangential shear stress; U 
is the velocity of the liquid; x is the transverse coordinate; n and n are the rheo- 
logical constants; a is the half-width of channel; Eo is the external electric field; 
0 is the three-dimensional electric-charge density; e is the induced electric field; 
qo is the charge per unit length of channel; s is the dielectric constant of the medi- 
um; eo is the electric constant; ~ is the dimensionless mobility coefficient; b is the 
mobility of the electric charges; D is the diffusion coefficient of the charged par- 
ticles; P is the pressure gradient; Uo and Vo are the characteristic velocities; H e 
are the electrohydrodynamic interaction parameters; Ho, ~i, Ha, H w are the character- 
istic values of the interaction parameters; Xol, xo2, Xo3 are the interzone boundaries 
of the various modes of flow. 
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